Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract. During March–June 2017 emissions of nitrogen oxides were measured via eddy covariance at the British Telecom Tower in central London, UK. Through the use of a footprint model the expected emissions were simulated from the spatially resolved National Atmospheric Emissions Inventory for 2017 and compared with the measured emissions. These simulated emissions were shown to underestimate measured emissions during the daytime by a factor of 1.48, but they agreed well overnight. Furthermore, underestimations were spatially mapped, and the areas around the measurement site responsible for differences in measured and simulated emissions were inferred. It was observed that areas of higher traffic, such as major roads near national rail stations, showed the greatest underestimation by the simulated emissions. These discrepancies are partially attributed to a combination of the inventory not fully capturing traffic conditions in central London and both the spatial and temporal resolution of the inventory not fully describing the high heterogeneity of the urban centre. Understanding of this underestimation may be further improved with longer measurement time series to better understand temporal variation and improved temporal scaling factors to better simulate sub-annual emissions.more » « less
-
Abstract The National Ecological Observatory Network (NEON) is a multidecadal and continental-scale observatory with sites across the United States. Having entered its operational phase in 2018, NEON data products, software, and services become available to facilitate research on the impacts of climate change, land-use change, and invasive species. An essential component of NEON are its 47 tower sites, where eddy-covariance (EC) sensors are operated to determine the surface–atmosphere exchange of momentum, heat, water, and CO 2 . EC tower networks such as AmeriFlux, the Integrated Carbon Observation System (ICOS), and NEON are vital for providing the distributed observations to address interactions at the soil–vegetation–atmosphere interface. NEON represents the largest single-provider EC network globally, with standardized observations and data processing explicitly designed for intersite comparability and analysis of feedbacks across multiple spatial and temporal scales. Furthermore, EC is tightly integrated with soil, meteorology, atmospheric chemistry, isotope, phenology, and rich contextual observations such as airborne remote sensing and in situ sampling bouts. Here, we present an overview of NEON’s observational design, field operation, and data processing that yield community resources for the study of surface–atmosphere interactions. Near-real-time data products become available from the NEON Data Portal, and EC and meteorological data are ingested into AmeriFlux and FLUXNET globally harmonized data releases. Open-source software for reproducible, extensible, and portable data analysis includes the eddy4R family of R packages underlying the EC data product generation. These resources strive to integrate with existing infrastructures and networks, to suggest novel systemic solutions, and to synergize ongoing research efforts across science communities.more » « less
-
Abstract Carbon fluxes in terrestrial ecosystems and their response to environmental change are a major source of uncertainty in the modern carbon cycle. The National Ecological Observatory Network (NEON) presents the opportunity to merge eddy covariance (EC)‐derived fluxes with CO2isotope ratio measurements to gain insights into carbon cycle processes. Collected continuously and consistently across >40 sites, NEON EC and isotope data facilitate novel integrative analyses. However, currently provisioned atmospheric isotope data are uncalibrated, greatly limiting ability to perform cross‐site analyses. Here, we present two approaches to calibrating NEON CO2isotope ratios, along with an R package to calibrate NEON data. We find that calibrating CO2isotopologues independently yields a lowerδ13C bias (<0.05‰) and higher precision (<0.40‰) than directly correctingδ13C with linear regression (bias: <0.11‰, precision: 0.42‰), but with slightly higher error and lower precision in calibrated CO2mole fraction. The magnitude of the corrections toδ13C and CO2mole fractions vary substantially by site, underscoring the need for users to apply a consistent calibration framework to data in the NEON archive. Post‐calibration data sets show that site mean annualδ13C correlates negatively with precipitation, temperature, and aridity, but positively with elevation. Forested and agricultural ecosystems exhibit larger gradients in CO2andδ13C than other sites, particularly during the summer and at night. The overview and analysis tools developed here will facilitate cross‐site analysis using NEON data, provide a model for other continental‐scale observational networks, and enable new advances leveraging the isotope ratios of specific carbon fluxes.more » « less
An official website of the United States government
